場效應晶體管(FieldEffectTransistorFET)是利用電場來控制固體材料導電性能的有源器件。由于其所具有體積小、重量輕、功耗低、熱穩定性好、無二次擊穿現象以及安全工作區域寬等優點,現已成為微電子行業中的重要元件之一。
目前無機場效應晶體管已經接近小型化的自然極限,而且價格較高,在制備大表面積器件時還存在諸多問題。因此,人們自然地想到利用有機材料作為FET的活性材料。自1986年報道第一個有機場效應晶體管(OFET)以來,OFET研究得到快速發展,并取得重大突破。
有機場效應晶體管是什么----有機場效應晶體管基本結構
傳統的有機場效應晶體管的主要包括底柵和頂柵兩種結構,其中底柵和頂柵結構又分別包括頂接觸和底接觸兩種結構,如圖1所示。
圖1典型的OFET結構
OFET一般采用柵極置底的底柵結構,即圖1(a)、(b)所示的兩種結構,它們分別是底柵-頂接觸結構和底柵-底接觸結構。二者最大的區別就是有機層是在鍍電極之前(a頂接觸)還是之后(b底接觸)。頂接觸結構的源、漏電極遠離襯底,有機半導體層和絕緣層直接相連,在制作的過程中可以采取對絕緣層的修飾改變半導體的成膜結構和形貌,從而提高器件的載流子遷移率。同時該結構中半導體層受柵極電場影響的面積大于源、漏電極在底部的器件結構,因此具有較高的載流子遷移率。底接觸型OFET的主要特點是有機半導體層蒸鍍于源、漏電極之上,且源、漏電極在底部的器件結構可以通過光刻方法一次性制備柵極和源、漏電極,在工藝制備上可以實現簡化。而且對于有機傳感器來說,需要半導體層無覆蓋地暴露在測試環境中,此時利用底結構就有較大的優勢。而底接觸由于半導體層與金屬電極之間有較大的接觸電阻,導致載流子注入效率降低從而影響到其性能。目前這方面缺陷也有改進,如使用鍍上聚乙撐二氧噻吩和聚苯乙烯磺酸款(PEDOT:PSS)材料的金電極可以減少與有機半導體并五苯材料之間的接觸電阻。二者之間載流子注入的阻力由0.85eV直接降到0.14eV,導致場遷移率從0.031cm2/(V·s)增加到0.218cm2/(V·s)。
圖1(c),(d)為頂柵結構,即首先在襯底上制作有機半導體層,然后制作源、漏電極,隨后再制作絕緣層,最后在絕緣層上面制作柵極。這兩種柵極位于最頂部的頂柵結構在文獻報道中并不是很多。
圖2是垂直溝道OFET結構,是以縮短溝道長度為目的的一類新型場效應晶體管。它以半導體層為溝道長度,依次蒸鍍漏-源-珊電極,通過改變柵電壓來控制源、漏電極的電流變化。
圖2垂直溝道OFET結構
這種結構的主要特點是:溝道長度由微米量級降低至納米量級,極大的提高了器件的工作電流,降低了器件的開啟電壓。這類晶體管的不足之處在于漏-源-柵極在同一豎直面內,彼此間寄生電容的存在使得零點電流發生漂移,一般通過放電處理后可以避免這種現象。
有機場效應晶體管是什么----工作原理
有機場效應晶體管是一種基于有機半導體的有源器件,源極1導電溝道中注入電荷,漏極收集從導電溝道中流出的電荷,柵極誘導有機半導體與絕緣層界面產生電荷形成導電溝道。整個有機場效應晶體管可以看做是一個電容器,柵極是電容器的一個極板,位于源漏電極之間的導電溝道是電容器的另一極板,而夾在中間的柵絕緣層相當于電容器的絕緣板。例如,在底柵頂接觸有機場效應晶體管中,當柵壓和源漏電壓均為零的時候,器件處于關閉狀態。外加一定的柵壓(Vg),有機半導體層和絕緣層界面誘導產生電荷,在源漏電壓為零時,電荷均勻的分布在溝道中,施加--定的源漏電壓(Vsp),感應電荷參與導電。通過調節柵壓的大小改變電容器電場強度,調節導電溝道中電荷密度,改變導電溝道的寬窄從而控制電流的大小。因此,有機場效應晶體管是一種壓控型的有源器件。
當器件處于開啟狀態時,漏電流滿足下面兩個方程式: